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Abstract. We report calculations of total positronium Ps(1s)-formation cross
section for positron scattering by ground-state atomic hydrogen in the en-
ergy range of Ps-formation threshold of 6.8 eV to 120 eV. For the description
of the process of electron capture to the bound state of the projectile the
Oppenheimer–Brinkman–Kramers approximation has been used. The values
of the total cross section obtained from this simple quantum-mechanical model
are in qualitative agreement with the experimental results.
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1. Introduction

Positrons, since their discovery, have been extensively used as probes in different
branches of physics as reviewed in 1982 by Ghosh et al. [1] and more recently by
Drachman [2]. During the past few years great progress has been achieved in the
experimental and theoretical study of positron–atom collisions. When a positron
collides with, for example, a hydrogen atom the following processes are possible:

Elastic scattering e+ + H(1s) → e+ + H(1s),
Excitation e+ + H(1s) → e+ + H(nlm),
Ionization e+ + H(1s) → e+ + e− + p,
Annihilation e+ + H(1s) → p + γ,
Positronium formation e+ + H(1s) → Ps(nlm) + p.

Experimentally, positron–atom collisions are difficult to study because of the low
intensity of available positrons beams. Positrons emerge usually from radioactive
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Na22 or Co58 sources with energies of a few hundred keV. To obtain a monoenergetic
beam with energy of a few eV, moderation is required with consequent loss of flux.
On the theoretical side the advances have been associated with the development
of coupled-channel methods for positron–hydrogen atom collisions as reviewed by
Walters et al. [3]. The first quantum-mechanical theory of inelastic collisions of fast
charged particles with atoms has been established by Bethe [4] in 1930. This theory
is based on the first Born approximation (B1), and has been applied at the first
time in 1954 by Massey and Mohr [5] for positronium (Ps) formation in positron–
hydrogen collision. In spite of the fact, that more sophisticated methods [6–8] give
more accurate results for the total Ps-formation cross section, the Bethe theory
has the advantage of following analytical expressions for the elastic scattering, ex-
citation, ionization and the positronium-formation cross sections. The annihilation
process cannot be treated in this model, because it is significant only at very low
impact energies of the positron, where the Born approximation cannot be applied.
In this paper we present application of first order Oppenheimer–Brinkman–Kramers
approximation (OBK1), which is the simplified version of the B1 approximation,
to study positronium formation in positron scattering by ground state atomic hy-
drogen. In Section 2 a brief description of the model of positronium formation and
the method of calculation will be outlined. The details for evaluating the transition
matrix, the differential and the total cross sections are considered in Section 3. The
results are discussed and compared with other calculations and experimental data
of Zhou et al. [9] and Weber et al. [10] in Section 4.

2. The Model of Positronium Formation

Positronium formation in positron–hydrogen collisions is a three-body charge re-
arrangement process in which an electron of mass m and charge qe is transferred
from a bound orbital centered on the proton to a bound orbital around the moving
positron. The positronium is a very light H like atom of mass 2m and reduced mass
m/2. The threshold for Ps formation is at an energy of Eth = 0.5R∞ (R∞ is the
Rydberg constant in eV) below the ionization potential of the atom. For hydrogen
this threshold is at 6.8 eV. Various theories have been applied to this problem as
reviewed in a recent paper by Walters [3]. In our model the Hamilton operator for
the reaction

e+ + H(1s) → Ps(1s) + p (1)

has two equivalent forms. In the incident channel

H = − ~2

2m
∇2

r + hi + Vi ≡ Hi + Vi,

hi = − ~2

2m
∇2

x −
e2

x
, Vi =

e2

r
− e2

|r − x| , (2)
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here e2 = q2
e/4πε0, x denotes the coordinates of the orbital electron, and r those of

the incident positron, measured from the the position of the nucleus, assumed fixed.
In Eq. (2) hi is the Hamiltonian of the hydrogen atom and the positron–hydrogen
interaction is described by Vi. After the positronium having been formed it is more
appropriate to use the following positronium coordinates

s = r − x, R =
1
2
(r + x), (3)

where R is the center-of-mass vector of the positronium relative to the proton and
s denotes the positronium internal coordinates. The splitting of the Hamiltonian
(2) in the the rearranged channel is

H = − ~2

4m
∇2

R + hf + Vf ≡ Hf + Vf ,

hf = −~2

m
∇2

s −
e2

s
, Vf =

e2∣∣R + 1
2s

∣∣ − e2∣∣R − 1
2s

∣∣ , (4)

where hf is the Hamiltonian of the positronium. The initial φi and final φf states
of the colliding system in the incoming and outcoming channels can be given as
eigenfunctions

H∞i,f φi,f = Ei,fφi,f (5)

of the

H∞i = lim
r→∞, x finite

H = − ~2

2m
∇2

r + hi = Hi,

H∞f = lim
R→∞, s finite

H = − ~2

4m
∇2

R + hf = Hf (6)

asymptotic Hamiltonians. Since, the perturbation potentials Vi and Vf are of short
range, so that the relative motion will be described by simple plane waves eikr and
eiκR, respectively, in the initial and final arrangements. Taking into account, that

hi,fϕi,f = εi,fϕi,f , (7)

where εi = −R∞ and εf = −0.5R∞ are the ground-state binding energies of the
hydrogen and positronium, respectively, the wave function in the incoming channel
can be written as

φi(x, r) = ϕi(x) exp(ikr) =
1√
πa3

0

exp(−x/a0 ) exp(ikr). (8)

Here a0 is the Bohr radius, k is the wave number of the incident positron relative to
the target nucleus. After collisions, when the positronium is at large distant from
the proton, the final state of the system in the outgoing Ps(1s) channel is given by

φf (s, R) = ϕf (s) exp(iκR) =
1√
πa3

exp(−s/a) exp(iκR), (9)
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where a = 2a0 and κ is the wave number of the center-of-mass motion of the ground
state positronium with respect to the nucleus. The total energy of the process (1)

Ei =
~2k2

i

2m
+ εi =

~2k2
f

4m
+ εf = Ef , (10)

where ki = k and kf = κ. In this method, the initial and final electronic states
are assumed to be undistorted atomic eigenstates ϕi and ϕf of target and projec-
tile, respectively. Moreover, we note that the function φi is an eigenfunction of the
channel Hamiltonian Hi whereas the function φf is an eigenfunction of a differ-
ent channel Hamiltonian Hf . Therefore their orthogonality is not ensured. What
matters is that the two states are orthogonal when the distance between projectile
and target goes to infinity when we can define the initial and final states in the
collision. This is ensured by the exponential decay of bound wave functions. This
asymptotic orthogonality is necessary for the following formulation of the theory.
The differential cross section for the capture and scattering into solid angle dΩf of
κ for process (1) is

dσfi(Ei)
dΩf

=
m2

2π2~4

κ

k
|Tfi(Ei)|2, (11)

where the transition matrix T is determined by the interaction of the projectile and
the target. Ωf ≡ (Θf , Φf ) are the polar angles of κ with respect to k as axis. The
total cross section can be obtained integrating Eq. (11) over dΩf :

σfi(Ei) =
m2

2π2~4

κ

k

∫
|Tfi(Ei)|2dΩf . (12)

For example, in the first Born approximation the transition matrix can be written
as

T B1
fi (Ei) = 〈φi(Ei) |Vi|φf (Ef )〉 . (13)

3. Calculation of the Cross Sections

The transition matrix can be calculated in the B1 approximation using Eq. (13)
with the expressions (8) and (9) for the initial and the final states, and Eq. (2) for
the interaction between the incident positron and the hydrogen atom. Massey and
Mohr [5] determined the total cross section in this way. The initial and final states
are not orthogonal, thus the contribution of the positron–proton interaction to the
transition matrix does not vanish automatically. This difficulty does not occur in
the B1 approximation for excitation or ionization, because in that case the initial
and final states are orthogonal. It is interesting to note that this inconsistency does
not happen in the boundary corrected Born approximation: it was shown that if
Coulomb boundary corrected states are used this interaction causes only a phase
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factor in the transition amplitude, which does not contribute to the total cross sec-
tion [11]. The result of the B1 approximation is identical with the first Coulomb
boundary corrected Born approximation for symmetric charge transfer collision,
such as (1). In the present treatment we will use the plane-wave OBK1 approx-
imation which is obtained by neglecting the residual positron–proton interaction
term in the perturbation potential Vi. The OBK1 approximation provides a poorer
description of the experimental data than the B1 approximation. This fact demon-
strate the importance of Coulomb boundary corrected states. Using this simplified
model the integrations can be performed analytically as follows. The expressions of
the transition matrix (13)

TOBK1
fi =

e2

π
√

8a3
0

∫ ∫
exp

(
− iκR

)
exp

(
− s

2a0

)
exp

(
ikr

)
×

× exp
(
− x

a0

)(
− 1

s

)
d3rd3x (14)

can be written in the form

T OBK1
fi = − e2

π
√

8a3
0

∫
exp

(
− iλs

)1
s

exp
(
− s

2a0

)
d3s×

×
∫

exp
(
− iqx

)
exp

(
− x

a0

)
d3x, (15)

where the momentum transfer vector q = κ− k and the wave vector λ = κ/2− k
have been introduced. The integrations in Eq. (15) can be performed easily, and
from Eq. (11) we obtain the differential cross section

dσPs

dΩ
=

28a2
0

π2

κ

k

1

(1 + q2a2
0)

6 . (16)

It seems from Eq. (16), that a peak appears in the differential cross section based on
T OBK1

fi at forward scattering angle Θ = 0◦. The total cross section given by Eq. (12)
can be calculated in the following way. Taking into account that dΩ = 2π sin ΘdΘ,
where Θ is the scattering angle, and for given positron energy (i.e. for given k)

q2 = (κ− k)2 = κ2 + k2 − 2κk cos Θ, (17)

implies qdq = kκ sinΘdΘ, we obtain

dΩ =
2π

kκ
dq, (18)

and

σPs =
∫
4π

dσPs

dΩ
dΩ =

κ+k∫
|κ−k|

dσPs

dΩ
2πq

kκ
dq. (19)
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Using Eq. (16) the result of the integration for the total cross section of the Ps(1s)
formation is:

σPs =
210a2

0

5π

ξ

ζ

1[(
(ξ − ζ)2 + 1

)(
(ξ + ζ)2 + 1

)]5

[
5ξ8 + 20ξ6(3ζ2 + 1) +

+2ξ4(63ζ4 + 70ζ2 + 15) + 20ξ2(3ζ2 + 1)(ζ2 + 1)
2

+ 5(ζ2 + 1)
4

]
, (20)

where

ξ = κa0, ζ = ka0. (21)

Formula (20) can be evaluated approximately for high projectile energy E as well
as for the positronium-formation threshold Eth and we obtain:

σPs(E →∞) ≈
1189 · 221/2

5πa10
0

1
k12

∝ v−12
p , σPs(E → Eth) = 0. (22)

In the B1 approximation, as already pointed out for large projectile velocities vp,
the charge changing cross sections decreases asymptotically as v−12

p or E−6, see
Shakeshaft [12]. This dramatic dependence on velocity occurs because the overlap
in momentum space between the initial and final electron wave function diminishes
very fast as the relative velocity increases. It follows from relation (22) that the
applied OBK1 approximation gives back the v−12

p asymptotic behavior of the total
cross section. Our calculation predict the cross section maximum σPs = 5.359 ·
10−16 cm2 at E = 10.184 eV. These values can be calculated only numerically from
Eq. (20).

4. Results and Discussion

In Fig. 1 the calculated total Ps-formation cross section is compared with the ex-
perimental results of Zhou et al. [9] along with prior measurements of Weber et al.
[10] and several theoretical values [5–8,13] as a function of the positron energy. The
measured σPs’s and most of the calculated values follow a rather smooth, bell-like,
structureless curve. Both theory and experiment exhibit a broadly similar energy
dependence, i.e. σPs increases rapidly from the Ps-formation threshold energy before
peaking and falling as a function of E−γ . It is obvious that the total cross section
for Ps formation is dominated by capture into 1s state. Because of the probability
of capture process is the largest when the projectile velocity vp is near to orbital
velocity of ground state electron ve in the hydrogen atom, thus the peak in the total
cross section appears approximately at vp ≈ ve or E ≈ R∞. The B1 approximation
calculations of Massey and Mohr [5] and the Fock–Tani calculations of Straton [13]
predict cross sections which peak at an energy 3 eV lower than the measurements
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and with magnitudes greater by about 35% and 50%, respectively. The accurate
Kohn variational calculations of Brown and Humberston [6] are restricted to low
incident energies, but Weber et al. [10] note that the extrapolation of these pre-
dictions to higher energies does not appear inconsistent with the size and energy
location of observed maximum in σPs. The σPs values measured by Zhou et al. [9]
are reasonably consistent with the prior experimental result [10] and are in very
good agreement with the coupled 33-state calculation of Kernoghan et al. [7] and
with the 28-state close-coupling approximation by Mitroy [8] (except at energies
below the Ps-formation threshold).
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Fig. 1. Positronium-formation cross sections for e+–H scattering. Theory: thick
solid line, present work; dotted curve, Massey and Mohr [5]; thin solid line, Brown
and Humberston [6]; short broken curve, Kernoghan et al. [7]; long broken curve,
Mitroy [8]; full curve with dots, Straton [13]. Experiment: circles, Zhou et al. [9];
squares, Weber et al. [10].

Compared to the accurate calculations of Kernoghan et al. [7] and Mitroy
[8], our calculated cross sections increase more rapidly close to the positronium-
formation threshold. The OBK1 model predicts 70% larger value for the maximum
of the cross section and 4 eV lower projectile energy for the position of the maximum.
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This discrepancy is due to the fact such low energy processes cannot be treated sat-
isfactory by first-order perturbation theory. Furthermore, the OBK1 approximation
has a serious shortcoming. The wave functions in entrance and exit channels do
not satisfy the correct asymptotic Coulomb boundary conditions. Indeed, the long-
range nature of the Coulomb interaction does not allow one to use unperturbed
atomic wave functions even at finite separations. However, the obtained cross sec-
tions are close to the measured data of Zhou et al. [9] in the intermediate collision
energy range (between 20 eV and 30 eV).

For proton–hydrogen collision it is shown that Thomas-type double scattering
mechanism is the dominant process at high energies in the case of electron capture
[12]. The second order Born approximation which was applied to describe this
process gives a v−11

p asymptotic velocity dependence of the double scattering cross
section σDS. In contrast, the OBK1 cross section σOBK1 varies as v−12

p . Form
the different velocity dependence it comes that σDS dominates over σOBK1 above
a certain projectile energy. In Fig. 1 a similar effect can be observed for positron–
hydrogen collision. The values of the σPs cross section are less than the cross sections
calculated within the higher order approximations and the measured data of Zhou
et al. [9] at high impact energies. Although not accurate, our elementary treatment
gives a qualitative, but at the same time analytical description of the electron
rearrangement process in the positron–hydrogen collision, resulting Ps formation.
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