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Abstract

A program is presented for calculation of the matrix elements of the Coulomb interaction between a charged particle and
an atomic electron,

∫
ψ

†
f
(r)|R − r|−1ψi(r)dr . Bound-free transitions are considered. Relativistic hydrogenic wave functions

are used for the numerical evaluation of the matrix elements. The applied algorithm is based on the multipole series expansion
of the Coulomb potential. The radial part of the terms of this series expansion (known asG functions) can also be obtained.
 2001 Elsevier Science B.V. All rights reserved.
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PROGRAM SUMMARY

Title of program: MTRDCOUL

Catalogue identifier: ADOX

Program obtainable from: CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland

Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/ADOX

Computer for which the program is designed: IBM compatible PC
with Pentium processor

Operating system under which the program has been tested: MS-
DOS

Programming language used: Fortran 77

Memory required to execute with typical data: 200 kbytes

No. of bits in a word: 8

No. of bytes in distributed program, including test data, etc.: 15 020

Distribution format: gzip file
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CPC Program Library subprograms used: F3Y [1] (catalogue num-
ber: AAQQ); DCOUL [2] (catalogue number: ADBP). The subpro-
grams are included in the distributed program

Keywords: Coulomb interaction, matrix elements, ionization, rela-
tivistic hydrogenic wave functions, Dirac–Coulomb functions, mul-
tipole series expansion

Nature of physical problem
The theoretical description of the excitation and ionization of atoms
by charged particle impact often requires the knowledge of the ma-
trix elements of the Coulomb interaction. The program MTRD-
COUL calculates the matrix elements between bound and free states
represented by relativistic hydrogenic wave functions.

Method of solution
The multipole series expansion of the Coulomb potential is used to
solve the problem.

Restrictions on the complexity of the problem
The matrix elements are calculated with the following restrictions.
The initial bound states are limited to 1s1/2, 2s1/2, 2p1/2, 2p3/2,
3s1/2, 3p1/2, 3p3/2, 3d3/2, 3d5/2. The quantum numberl in the
final state has a maximum value of 10.

Typical running time
The test run requires about 170 s.
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LONG WRITE-UP

1. Introduction

This study is an extension of a previous work [1] in which a computer program (called MTRXCOUL) was
developed to calculate the matrix elements of the Coulomb interaction between a charged particle and an atomic
electron,

Vf i(R)=
〈
ψf (r)

∣∣∣∣ 1

|R − r |
∣∣∣∣ψi(r)

〉
. (1)

These quantities are relevant in the theoretical description of the excitation, ionization processes of atoms by impact
of charged particles. In Eq. (1)r is the coordinate of the orbital electron andR is that of the incident projectile.
Theψj(r) one-electron wave functions define the dynamical state of the electron in the atom. In MTRXCOUL
the initial and final states are represented bynon-relativistic hydrogenic wave functions. It is known that at low
collision velocities and for heavy target atoms the inner-shell ionization cross sections are considerably affected
by electronic relativistic effects. Therefore, for an accurate description of the inner-shell processes the use of
relativistic wave functions is unavoidable. In the present work the program MTRXCOUL was further developed:
We replaced the non-relativistic wave functions by one-electron Dirac bispinors. We considered again bound-free
transitions. To carry out such calculations one needs accurate Coulomb functions. In the new relativistic code
(called MTRDCOUL) the DCOUL subroutine developed by Salvat et al. [2] is used for calculation of the Dirac–
Coulomb functions.

2. Method of solution

Let us consider the stationary Dirac equation of an electron moving withs = 1/2 spin in the Coulomb field
V (r)= −Ze2/r of a nuclear point chargeZ:

ĤD = −ich̄α̂p̂ + β̂mec
2 + V (r), ĤDψ(r)= (E +mec

2)ψ(r). (2)
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HereĤD is the Dirac Hamiltonian andE is the corresponding total energy eigenvalue minus the rest energy of
the electron,̂α andβ̂ are standard 4× 4 Dirac matrices in the spinor representation,me is the electron mass and
c is the speed of light. Theψ(r) eigenstate is a four-component function. The total angular momentum vectorĴ
for a relativistic electron is given bŷJ = L̂ + Ŝ, whereL̂ = r̂ × p̂ is the orbital angular momentum operator and
Ŝ = 1/2h̄Σ̂ is the spin angular momentum operator (Σ̂ = diag(σ̂ , σ̂ )). The 2× 2 matricesσ̂ are the Pauli spin
matrices. The total angular momentum operator commutes with the central field Dirac Hamiltonian:[Ĵ , ĤD] = 0.
One can, therefore construct simultaneous eigenstates of the three commuting operatorsĤD, Ĵ 2 and Ĵ z. The
operators{Ĵ 2, Ĵ z, L̂

2, Ŝ 2} form a complete set of commuting observables (C.S.C.O.). The common eigenstates
of these operators are the two-component spherical spinors

Ωjlmj (r̂)=
∑

ms=±1/2

(lmlsms |jmj )Ylmj−msχsms , (3)

where j = 1/2,3/2,5/2, . . . is the total angular momentum quantum number andmj = −j,−j + 1/2, . . . ,
j − 1/2, j is its z-projection. In Eq. (3)Ylml is a spherical harmonics which is eigenfunction of theL̂2 and
L̂z operators with eigenvaluesl(l + 1) andml (l = 0,1,2, . . . ; ml = −l,−l + 1, . . . , l − 1, l), as well asχsms

are two-component eigenfunctions of theŜ 2 and Ŝz operators with eigenvaluess(s + 1) = 3/4 andms = ±1/2.
The quantities(lmlsms |jmj ) are the Clebsch–Gordan coefficients. There are two possiblel values in Eq. (3) for
each value ofj : l = j + 1/2 andl = j − 1/2. The corresponding spherical spinors have opposite parity. Since for
relativistic electron motion the orbital angular momentum is not conserved, the upper and lower components of
the Dirac bispinor differ in their orbital angular momentum quantum numbers. The eigenstatesψ(r) are usually
characterized by the eigenvalueκ of the Dirac angular momentum operator̂K = −β̂(Σ̂ · L̂ + h̄) and by the
magnetic quantum numbermj . We note thatK̂Ωjlmj = κΩjlmj , whereκ = −(j + 1/2) for j = l + 1/2, and
κ = j + 1/2 for j = l − 1/2. The operator̂K has integer eigenvaluesκ = ±1,±2, . . . . We introduce the more

compact notationΩjlmj (r̂)
def= Ωκmj (r̂). The oparators{ĤD, Ĵ

2, Ĵ z, K̂} also form C.S.C.O., thus we can label the
common eigenstates with quantum numbersn, j,mj andκ . Heren = 0,1,2, . . . is the principal quantum number.
At the end, the one-electron Dirac orbitalψnκmj (r) can be expressed in the form

ψnκmj (r)=
 ignκ(r)Ωκmj (r̂)

fnκ (r)Ω−κmj (r̂)

 , (4)

whereg(r) andf (r) are the upper- and lower-component radial wave functions, and theΩκmj (r̂), Ω−κmj (r̂)
functions give the angular parts of the eigenstate.

The matrix elements (1) are evaluated using themultipole series expansion of the Coulomb potential

1

|R − r| =
∞∑
L=0

L∑
M=−L

4π

2L+ 1

(r<)
L

(r>)L+1Y
∗
LM(R̂)YLM(r̂). (5)

Inserting (5) into (1), it follows from the relation

〈Ωκf mjf
|YLM |Ωκimji

〉 = 〈Ω−κf mjf
|YLM |Ω−κimji

〉 (6)

that

Vf i(R) =
∑

ms=±1/2

(lf ,mjf −ms, s,ms |jf ,mjf )(li,mji −ms, s,ms |ji,mji )

×
Lmax∑

L=Lmin

L∑
M=−L

4π

2L+ 1
GL

f i(R)Y
∗
LM(R̂)CLM

f i , (7)
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where

GL
f i(R) = 1

RL+1

R∫
0

[
g∗
f (r)gi(r)+ f ∗

f (r)fi(r)
]
rLr2 dr +RL

∞∫
R

[
g∗
f (r)gi(r)+ f ∗

f (r)fi(r)
] 1

rL+1
r2 dr (8)

is theform factor and

CLM
f i =

∫
Y ∗
lf ,mjf

−ms
(r̂)YLM(r̂)Yli ,mji

−ms (r̂)dΩr (9)

is thegeometrical factor. We use the Wigner–Ekhart theorem to express the integral of the product of three spherical
harmonics. It can be given in terms of the Wigner three-j symbols

CLM
f i = 〈Yl1m1|Yl2m2|Yl3m3〉 = (−1)m1

[
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

]1/2

×
(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
. (10)

The values ofCLM
f i are obtained using the F3Y subprogram [3]. The Clebsch–Gordan coefficients are evaluated

according to the following expressions:

(l,ml, s,ms = ±1/2|j,mj) =
(
j ±mj

2j

)1/2

, if j = l + 1/2,

(l,ml, s,ms = ±1/2|j,mj) =
(
j + 1∓mj

2j + 2

)1/2

, if j = l − 1/2. (11)

The values ofLmin andLmax in Eq. (7) are determined by the properties ofCLM
f i . In Eq. (10)lj andmj should

meet the following conditions (otherwiseCLM
f i = 0):

(i) l1 + l2 + l3 is even (this ensures the parity conservation),
(ii) m1 +m2 +m3 = 0.

Condition (i) determines the range of multipole order (L = Lmin,Lmin + 2, . . . ,Lmax), condition (ii) reduces the
summation overL andM to terms with|jf − ji | � L � |jf + ji | andM = mjf −mji , respectively.

3. Radial Dirac wave functions

Introducing the fine-structure constantα = e2/h̄c = 1/137.036, as well as theζ = αZ and λ = √
κ2 − ζ 2

variables, the Sommerfeld formula for thebound hydrogenic eigenenergies can be written as

Wnκ = mec
2 ·wnκ, wnκ =

[
1+

(
ζ

nr + λ

)2]−1/2

, (12)

where the radial quantum numbernr = 0,1,2, . . . is related to the principal quantum number byn = nr + |κ |.
Furthermore, we introduce the notationsλc = h̄/mec (the electron Compton wavelength divided by 2π ) and
νnκ = √

1−w2
nκ/λc (the bound-state wave number). With these notations the radial bound wave functionsg(r)

andf (r) can be expressed by the confluent hypergeometric functions1F1(a, c;x) as

g(r)

f (r)

 = Ng

Nf

 (2νr)λ−1e−νr

[(
ζ

νλc
− κ

)
1F1(−nr,2λ+ 1;2νr)∓ nr 1F1(1− nr ,2λ+ 1;2νr)

]
(13)
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with the normalization factors

Ng

Nf

 = (−1)ε
√

2ν5/2λc

Γ (2λ+ 1)

[
(1±w)Γ (2λ+ 1+ nr)

ζ(ζ − κνλc)nr !
]1/2

. (14)

(The definition of the parameterε will be given later.) In Eqs. (13) and (14) we omitted the indicesn, κ from the
variablesνnκ andwnκ .

Introducing the quantities

k = 1

λc

√
w2 − 1, η = ζw

kλc
, e2i7κ = −κ + iη/w

λ+ iη
, (15)

the radial hydrogeniccontinuum wave functions belonging to electron energyW = mec
2 · w has the following

form:

g(r)

f (r)

 = (−1)ε
√

k

πE

√
w ± 1

w + 1
e

1
2ηπ

|Γ (λ+ iη)|
Γ (2λ+ 1)

(2kr)λ

r

× Re

Im

{
e−ikr+i7κ (λ+ iη) · 1F1(λ+ 1+ iη,2λ+ 1;2ikr)

}
. (16)

Methods to construct analytical expression for the bound- and free-state solutions of the Dirac-equation in central
field have been described in detail by Greiner [4] and Rose [5]. For numerical calculation of the radial continuum
Dirac–Coulomb functions we use a program developed by Salvat et al. [2].

The bound-state wave functions are normalized to unity. The normalization of the free states is such that the
upper component oscillates with unit amplitude in the asymptotic region apart from the energy normalization
factor (k/(πE))1/2. It is a natural expectation that in the non-relativistic limit the upper component reduces to
the non-relativistic Coulomb function, and the lower component vanishes. For calculation of the bound-state wave
functions we adopted the normalization condition determined by Salvat et al. [2] which gives correct sign for this
limit. This is ensured by the factor(−1)ε in Eqs. (14) and (16):ε equals 0 whenκ < 0, or equals 1 whenκ > 0
(for an attractive potential, i.e. forζ > 0).

4. Code description

Since MTRDCOUL is the relativistic extension of MTRXCOUL [1], here we discuss only the differences
between the two programs.

The matrix elementVf i for the eigenstates of the total angular momentumj is determined by the function VJ
according to Eq. (7). The value of VJ is obtained with the help of the function VK that calculates the Coulomb
matrix element for eigenstates of the Dirac angular momentumκ = (2j + 1)(l − j) (the term with the sum over
L andM in Eq. (7)). This function was named by VL in MTRXCOUL. Taking into account that the Dirac radial
wave functions depend on thej quantum number, the parameter list of VK includes also theji andjf quantum
numbers in the relativistic version.

Before using the function VJ or VK, one has to call the subroutine PREPARE. This program unit calculates the
values ofGL

f i(R) and stores them in the array GMTRX. PREPARE also includes theji quantum number in its
parameter list. In the relativistic case the radial wave function has two components, accordingly the two integrands
in expression (8) of theGL

f i(R) function consists of two terms. Therefore, we modified the integration subroutine
QGAUS, too.
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The final orbital angular momentuml varies in the range from 0 tolf max defined by the user. The quantum
numbersl andκ are related by

l =
{
κ, if κ > 0
−κ − 1, if κ < 0.

(17)

So, the first index of array GMTRX now corresponds to the value ofκf which is changing between−lf max − 1,
−lf max, . . . ,−1,1, . . . , lf max − 1, lf max according to Eq. (17). For more details of the program description, see
Sarkadi [1].

The components of the bound and continuum radial wave functions (see Eqs. (13) and (16)) are generated by
the RINIT and RFINAL subroutines. For the K, L and M shells the bound wave functionsg andf can be written
in the following simple forms:

gi(ρ)

fi(ρ)

 = (−1)εNi(1±wi)
1/2ρλi−1e−µiρ

 a0 + a1ρ + a2ρ
2

c0 + c1ρ + c2ρ
2

 , (18)

whereρ = Zr andµi = νi/Z. For the K shell and the L subshells the coefficientsak andck were taken from
Rose [5], while for the M subshells they were derived in the present work.

For the free states the radial wave functions are as follows:

gEκf (ρ)

fEκf (ρ)

 = Z

ρ

(
k

πE

)1/2
 F

(u)
λf

(
η,

kρ
Z

)
F

(l)
λf

(
η,

kρ
Z

)
 . (19)

The regular Dirac–Coulomb functionsF (u,l)
λ (η, x) are provided by the code DCOUL [2] forE �= 0. DCOUL is

called as

CALL DCOUL(−Z,E,K,R,FU,FL,GU,GL,ERR).

Here Z is the atomic number, E is the kinetic energy, K= κ , R is the radial distance. FU, FL and GU, GL are the
upper- and lower-components of the regular and irregular Dirac–Coulomb functions, ERR is the accuracy of the
computed functions.

At limit of zero kinetic energy the relativistic continuum wave functions in the Coulomb field have the following
form [6]:

gE=0,κf (ρ) = (−1)ε
√

2Z

ρ

[
J2λf−1

(√
8ρ

) − λf + κf√
2ρ

J2λf

(√
8ρ

)]
, (20)

fE=0,κf (ρ) = (−1)ε
Z1/2

ρ
ζJ2λf

(√
8ρ

)
, (21)

whereJz(x) is the fractional order Bessel function. For calculation ofJz(x) we use the relationship

Jz(x)=
√

2

πx
Fz−1/2(0, x). (22)

HereFυ(η, x) is the regular Schrödinger–Coulomb function which is calculated by the subroutine FCOUL [2] with
the following parameters:

CALL FCOUL(ETA,RLAMB ,X,F,FP,G,GP,ERR)

ETA = η = 0, RLAMB = z − 1/2, X = (8ρ)1/2, F and G are the regular and irregular Schrödinger–Coulomb
functions, FP and GP are their derivatives, ERR is the relative numerical uncertainty.
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5. Check of the program

For bound-free transitions, in the special case ofEf = 0, the limits GL
f i(R = 0) and GL

f i(R → ∞) can
be expressed analytically, therefore the numerically computed values can be checked for theseG functions.
In this section we present some examples for the calculation of theG matrix. First we consider the 2p3/2
initial state and theEf = 0 final state withκf = 1. In this case the parameters in Eq. (18) are as follows:
N = Z3/2/[2Γ (2λi + 1)]1/2, wi = λi/2, µi = 1/2, a0 = c0 = 1, a1 = a2 = c1 = c2 = 0. Using expressions (20)
and (21) for the initial and final states, as well as applying the integral formula of Ref. [7], the integration (8) of
theG the function can be performed analytically for large values ofR in the quadrupole order:

G2
f i(R → ∞)= C∞

(Z ·R)3 , (23)

where

C∞ = −22λf+λi+3 Γ (λi + λf + 3)

[2Γ (2λi + 1)]1/2

(
1+ λi

2

)1/2

×
{

1

Γ (2λf )
1F1(λi + λf + 3,2λf ;−4)

+
[(

2− λi

2+ λi

)1/2

ζ − λf − κf

]
1

Γ (2λf + 1)
1F1(λi + λf + 3,2λf + 1;−4)

}
. (24)

As a second example, let us consider theG functions values atR = 0 for different final states (withEf = 0) and
multipole orders. As initial state, the 2p3/2 orbital was chosen again. The analytical term of theG function at the
origin is:

GL
f i(R → 0)= C0(Z ·R)L, (25)

where

C0 = −sgn(κf )22λf+λi−L Γ (λi + λf −L)

[2Γ (2λi + 1)]1/2

(
1+ λi

2

)1/2

×
{

1

Γ (2λf )
1F1(λi + λf −L,2λf ;−4)

+
[(

2− λi

2+ λi

)1/2

ζ − λf − κf

]
1

Γ (2λf + 1)
1F1(λi + λf −L,2λf + 1;−4)

}
. (26)

The results of these calculations are shown in the sample program. The convergence of the matrix elements for
Ef = 0 to those for small and nonzero (Ef �= 0) energy has been checked.

As a further check of MTRDCOUL, we calculated K-, L- and M-shell ionization probabilities and cross sections
for proton on gold collisions within the framework of relativistic version (R) of the semiclassical approximation
(SCA) theory [8]. According to this RSCA model the ionization amplitudeaf i is given by

af i = −i

+∞∫
−∞

dt Vf i(t)e
i(Ef −Ei)t , (27)

where

Vf i(t) =
∫

dr ψ
†
f (r)

−ZP

|r − R(t, b)|ψi(r). (28)
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HereZP is the charge of the projectile,b is the impact parameter. TheVf i matrix elements are obtained from our
program MTRDCOUL. For the description of the states of the inner-shell electrons, an effective Slater-screened
nuclear chargeZ of the target atom was used in conjuction with the experimental binding energy.

The transition amplitudes allow us to calculate the ionization probability as a function of the impact parameter

Pi(b)=
∑
f

|af i |2, (29)

where the sum is taken over all continuum states (including integration overEf ). The total ionization cross section
is given by

σi = 2π

∞∫
0

db bPi(b). (30)

The calculated values of the K-shell ionization cross sections were compared with the results of the relativistic
plane-wave Born approximation (RPWBA) [9] in the energy range 1–5 MeV. For the L1, L2 and L3 subshells the
check was made at 0.4 MeV. The obtained cross sections were compared again with the predictions of the RPWBA
model [10]. For the M1,M2, . . . ,M5 subshells we could not compare our results with other theories in lack of
relativistic M-shell ionization calculations in the literature (with use of hydrogenic Dirac wave functions). Since
the relativistic effects are small for the M shell, here we could make a comparison with the non-relativistic SCA
model. In the latter calculations the matrix elements were computed with MTRXCOUL [1]. The check for the M
shell was made at 0.5 MeV proton energy. For each shells (subshells) the present RSCA calculations were found
in satisfactory agreement with the other theoretical data. The above calculations were made assuming straight-line
for the projectile trajectory. As a further test, the K-shell ionization cross sections were also computed with a
more realistic version of the RSCA model, in which the projectile moves on a hyperbolic trajectory (H), and the
increase of the binding energy of the electron is taken into account in the united-atom approximation (UA). The
latter model, denoted by HRSCA-UA, resulted in cross section values in good agreement with the measured data
of Kamiya et al. [11].

6. Sample program

The MAIN program of MTRDCOUL includes sample calculations of the matrix elementsVf i and the values of
theGL

f i(R) function for several initial and final states. These are the following:
• Matrix elements between states of the total angular momentum. The quantum numbers of the initial and final

states are:ni = 2, li = 0, ji = 1/2,mji = 1/2;Ef = 0.1, jf = 1/2,mjf = 1/2. The values oflf are 0 and 1,
because of the relationshipjf = lf ± 1/2. The polar coordinatesR, θ of the vectorR was chosen thatR
varies between 0. . .10 in steps 1 andθ = 0.5 radian.

• Comparison of numerically computedGL
f i(R → ∞) values with the corresponding analytical ones for large

values ofR. Initial state:ni = 2, ji = 3/2, li = 1. Final state:Ef = 0, jf = 3/2, lf = 1. Multipole order:
L= 2. The analytical result:C∞/R3.

• The numerically computedGL
f i(R → 0) values are compared with the analytical results at the origin for

different multipole orders (L = 2,0,1,0,3) and final states. Initial state:ni = 2, ji = 3/2, li = 1. Final
states:Ef = 0, jf = 1/2,1/2,1/2,3/2,3/2; lf = 1,1,0,1,2. The analytical results: 0,C0

Ef =0,κf =1, 0,

C0
Ef =0,κf =−2, 0.

In the above sample calculationsZ = 1 was taken for the nuclear charge of the atom. TheC∞ andC0 constants
were evaluated using the MAPLE mathematical software system [12].



L. Lugosi, L. Sarkadi / Computer Physics Communications 141 (2001) 73–82 81

References

[1] L. Sarkadi, Comput. Phys. Commun. 133 (2000) 119.
[2] F. Salvat, J.M. Fernández-Varea, W. Williamson Jr., Comput. Phys. Commun. 90 (1995) 151.
[3] A. Liberato de Brito, Comput. Phys. Commun. 25 (1982) 81.
[4] W. Greiner, Relativistic Quantum Mechanics — Wave Equations, Springer, Berlin, 1990.
[5] M.E. Rose, Relativistic Electron Theory, John Wiley and Sons, New York, 1961.
[6] T. Mukoyama, L. Sarkadi, Bull. Inst. Chem. Res., Kyoto Univ. 66 (1988) 11.
[7] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Natl. Bur. Stand. (U.S.) Appl. Math. Ser., Vol. 55, U.S. GPO,

Washington, DC, 1964, integral formula No. 11.4.28., pp. 486.
[8] J. Bang, J.M. Hansteen, Kgl. Danske Videnskap. Selskab, Mat.-Fys. Medd. 31 (1959), No. 13.
[9] T. Mukoyama, L. Sarkadi, Bull. Inst. Chem. Res., Kyoto Univ. 57 (1979) 1.

[10] T. Mukoyama, L. Sarkadi, Phys. Rev. A 25 (1981) 1411.
[11] M. Kamiya, K. Ishii, K. Sera, H. Tawara, Phys. Rev. A 16 (1977) 2295.
[12] M. Monagan, K. Geddes, K. Heal, G. Labahn, S. Vorkoetter, Maple V Programming Guide for Release 5, Springer, Berlin, 1997.



82 L. Lugosi, L. Sarkadi / Computer Physics Communications 141 (2001) 73–82

TEST RUN OUTPUT

Matrix elements between states of the total angular momentum
n_i = 1 l_i = 0 j_i = 1/2 mj_i = 1/2 j_f = 1/2 mj_f = 1/2
E_f = 0.10000D+00 theta = 0.50000D+00

Z*R V(l_f=0) V(l_f=1)

0.00 0.510150603681870D+00 0.643348846461918D-16
1.00 0.251310302012083D+00 -0.104795445906079D+00
2.00 0.623079628296980D-01 -0.944000425736001D-01
3.00 0.691992348636800D-02 -0.584261981291566D-01
4.00 -0.205056097180007D-02 -0.331396045444634D-01
5.00 -0.153499086559949D-02 -0.196686893562784D-01
6.00 -0.534621795843407D-03 -0.128820869819304D-01
7.00 -0.110457479251192D-03 -0.923660832344591D-02
8.00 0.868285167879229D-07 -0.703804296715670D-02
9.00 0.127773525167063D-04 -0.556832819077795D-02
10.00 0.757633525158059D-05 -0.451822132300222D-02

G function values for large R
n_i = 2 kappa_i = -2 kappa_f = 1
E_f = 0.00000D+00
Z*R G(L=2, numerical) G(L=2, analyt.)=const./(Z*R)**3

50.00 -0.245005727643649D-03 -0.245005823050562D-03
70.00 -0.892878363960091D-04 -0.892878363886889D-04
90.00 -0.420106006602451D-04 -0.420106006602473D-04

110.00 -0.230095626456201D-04 -0.230095626456200D-04
130.00 -0.139397942108877D-04 -0.139397942108877D-04
150.00 -0.907428974261342D-05 -0.907428974261342D-05

G function values at R=0
E_f = 0.00000D+00

L kappa_f n_i kappa_i G, numerical G, analytical

2 1 2 -2 0.107676238637811D-30 0.000000000000000D+00
0 1 2 -2 0.239267242032862D+00 0.239267242032860D+00
1 -1 2 -2 0.299102568323444D-16 0.000000000000000D+00
0 -2 2 -2 0.239276898638137D+00 0.239276898638135D+00
3 2 2 -2 0.119638449319068D-15 0.000000000000000D+00


