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Abstract

A program is presented for calculation of the matrix elements of the Coulomb interaction between a charged particle and
an atomic electronf w}(r)|R — r|*1wl~ (r)dr. Bound-free transitions are considered. Relativistic hydrogenic wave functions
are used for the numerical evaluation of the matrix elements. The applied algorithm is based on the multipole series expansion
of the Coulomb potential. The radial part of the terms of this series expansion (kno@ruations) can also be obtained.
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CPC Program Library subprograms used: F3Y [1] (catalogue num- Restrictions on the complexity of the problem
ber: AAQQ); DCOUL [2] (catalogue number: ADBP). The subpro-  The matrix elements are calculated with the following restrictions.
grams are included in the distributed program The initial bound states are limited ta1lo, 251/2, 2p1/2, 2p3/2,

351/2, 3p]_/2, 3p3/2, 3d3/2, 3d5/2. The quantum numbdrin the
Keywords: Coulomb interaction, matrix elements, ionization, rela-  final state has a maximum value of 10.
tivistic hydrogenic wave functions, Dirac—Coulomb functions, mul-

tlpole series expansion Typical running time

Nature of physical problem The test run requires about 170 s.

The theoretical description of the excitation and ionization of atoms

by charged particle impact often requires the knowledge of the ma- References

trix elements of the Coulomb interaction. The program MTRD- [1] A. Liberato de Brito, Comput. Phys. Commun. 25 (1982) 81.
COUL calculates the matrix elements between bound and free states[2] F. Salvat, J.M. Fernandez-Varea, W. Williamson Jr., Comput.
represented by relativistic hydrogenic wave functions. Phys. Commun. 90 (1995) 151.

Method of solution
The multipole series expansion of the Coulomb potential is used to
solve the problem.

LONG WRITE-UP

1. Introduction

This study is an extension of a previous work [1] in which a computer program (called MTRXCOUL) was
developed to calculate the matrix elements of the Coulomb interaction between a charged particle and an atomic
electron,

V/i(R) = L P 1)
i )—<wf<r)‘ﬁ‘w,<r>>.

These quantities are relevant in the theoretical description of the excitation, ionization processes of atoms by impact
of charged particles. In Eq. (¥)is the coordinate of the orbital electron aRdis that of the incident projectile.

The ¢ (r) one-electron wave functions define the dynamical state of the electron in the atom. In MTRXCOUL
the initial and final states are representedhby-relativistic hydrogenic wave functions. It is known that at low
collision velocities and for heavy target atoms the inner-shell ionization cross sections are considerably affected
by electronic relativistic effects. Therefore, for an accurate description of the inner-shell processes the use of
relativistic wave functions is unavoidable. In the present work the program MTRXCOUL was further developed:
We replaced the non-relativistic wave functions by one-electron Dirac bispinors. We considered again bound-free
transitions. To carry out such calculations one needs accurate Coulomb functions. In the new relativistic code
(called MTRDCOUL) the DCOUL subroutine developed by Salvat et al. [2] is used for calculation of the Dirac—
Coulomb functions.

2. Method of solution

Let us consider the stationary Dirac equation of an electron movingswithl/2 spin in the Coulomb field
V(r) = —Z€?/r of a nuclear point chargg:

Hp = —ich&p + fm.c?+V(r),  Hpy(r) = (E +m.cAy(r). @)
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Here Hp is the Dirac Hamiltonian and is the corresponding total energy eigenvalue minus the rest energy of
the electron@ andp are standard 4 4 Dirac matrices in the spinor representation,is the electron mass and
c is the speed of light. The (r) eigenstate is a four- component function. The total angular momentum \Ector
for a relativistic electron is given by L+S8, WhereL =r x p is the orbital angular momentum operator and

= 1/2h27 is the spin angular momentum operatd]' € diag(d, 6)). The 2x 2 matricess are the Pauli spln
matnces The total angular momentum operator commutes with the central field Dirac Hamlltdmalim]
One can, therefore construct simultaneous eigenstates of the three commuting oﬁﬁf)atar% and JZ The
operatorgJ 727, Jz, L2 S2} form a complete set of commuting observables (C.S.C.0O.). The common eigenstates
of these operators are the two-component spherical spinors

-lemj (f') = Z (lmlsmsumj)ylmj—ms Xsmg» (3)
my=t1/2

where j = 1/2,3/2,5/2,... is the total angular momentum quantum number and= —j, —j + 1/2,.
j—1/2,jis its z- prOJect|on In Eq. ()Y, is a spherical harmonics which is eigenfunction of hé and

L operators with eigenvaluég + 1) andm; (l =0,12,...;m=-1,-1+1,...,1—11), as well asygm,

are two-component eigenfunctions of t§& and S, operators Wlth eigenvaluass + 1) 3/4 andm, = £1/2.

The quantitieg/m;smy|jm ;) are the Clebsch—Gordan coefficients. There are two podsitkies in Eq. (3) for
eachvalue ofi: I = j +1/2 andl = j — 1/2. The corresponding spherical spinors have opposite parity. Since for
relativistic electron motion the orbital angular momentum is not conserved, the upper and lower components of
the Dirac bispinor differ in their orbital angular momentum quantum numbers. The eigengtateare usually
characterized by the eigenvalkeof the Dirac angular momentum operatEr— —,3(2 L +h) and by the
magnetic quantum numbet ;. We note thatK.QJlm/. =k Qjim;, Wwherexk = —(j +1/2) for j =1+ 1/2, and
k=j+1/2for j=1-1/2. The operatorl? has integer eigenvalugs= +1, +2, ... . We introduce the more

compact notation2 ., (#) d:efsz,(mj (#). The oparator$Hp, J 2, 7,, K} also form C.S.C.O., thus we can label the
common eigenstates with quantum numberg m; andx. Heren =0, 1, 2, ... is the principal quantum number.
At the end, the one-electron Dirac orbital.; (r) can be expressed in the form

i8nc (1) 2m ; (F)
wnkm/(r)z S ! '; ) (4)
f,,,((r).Q,,(m/.(r)

whereg(r) and f(r) are the upper- and lower-component radial wave functions, andthg (), 2_cm, (F)
functions give the angular parts of the eigenstate.
The matrix elements (1) are evaluated usingrtioéipole series expansion of the Coulomb potential

x L 4 (ro)t
<
= Y R)Y 5
T > Z AT T (R YL (7). (5)
L=0 M=
Inserting (5) into (1), it follows from the relation
(‘QKfm/'f |YLM|~QK,-m,-l. )= <-Qf)(fm,-f |YLM|‘Q*K,'m_,‘l. ) (6)
that
Vfl(R) = Z (lfvmjf_mSasam.?'jfvmjf)(ll.amji_mSasamS|jiamj,')
mg=+1/2
Lmax
x > Z 2L le, (R (RCEM, @)

L=Lmin M=—L
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where
17 r 1
Gfi(R) = =g / [s5(r)gi(r) + £7() fi(r)]rFr?dr + RE f [g}(r)g,«r)+f;f(r>ﬁ<r)]rmr2dr )
0 R
is theform factor and
CEY = [ 14y, s GV VY, A2, ©)

is thegeometrical factor. We use the Wigner—Ekhart theorem to express the integral of the product of three spherical
harmonics. It can be given in terms of the Wigner thjegtmbols

47
1 I I3 lh I I3
x (0 0 0) (ml mo m3) ’ (10)

The values OCL,.M are obtained using the F3Y subprogram [3]. The Clebsch—Gordan coefficients are evaluated
according to the following expressions:

21+ )2+ 1) (23 + 1) Y2
C}L”tlw = (Y11m1|Y12m2|Yl3m3) = (_1)"11[ 1 ]

. jEtm; 172 .
(,my,s,mg==%1/2|j,m;) = T , if j=14+1/2,
j
11 \1/2
(l,ml,s,ms=i1/2|j,m,-)=(%) it =112 (11)

The values ofLmin and Lmax in Eq. (7) are determined by the properties(zf;i’”. In Eq. (10)/; andm ; should
meet the following conditions (otherwigg:" = 0):

(i) 11412+ 13is even (this ensures tlge parity conservation),

(ii) m1+mo+m3=0.
Condition (i) determines the range of multipole ordeér=t Liin, Lmin + 2, - - ., Lmax), condition (ii) reduces the
summation ovel andM to terms with|j; — jil < L <|js + jil andM =m, —mj;, respectively.

3. Radial Dirac wavefunctions

Introducing the fine-structure constamt= €?/Ac = 1/137.036, as well as the = «Z and » = /k2 — ¢2
variables, the Sommerfeld formula for theund hydrogenic eigenenergies can be written as

29-1/2
W = mec2 cWhes,  Whe = |1+ £ / , (12)
ny + A

where the radial quantum number =0, 1, 2, ... is related to the principal quantum number by n, + |«|.
Furthermore, we introduce the notatiohs= #%/m.c (the electron Compton wavelength divided by)2and
Ve = +/1— w2, /A (the bound-state wave number). With these notations the radial bound wave fungtions
and f (r) can be expressed by the confluent hypergeometric funcitors, c; x) as

N
sy | _ N (2vr)*~temvr K{T - K) 1F1i(=nr, 20+ L 2vr) Fnp 1P (1 — 0y, 20 + 1 2vr)] (13)
fr) Ny Vic



L. Lugosi, L. Sarkadi / Computer Physics Communications 141 (2001) 73-82 77

with the normalization factors

Ny 352, [aores 1+m>]1/ : (14)

Ny =YV Trarnl c@—rron!

(The definition of the parameterwill be given later.) In Egs. (13) and (14) we omitted the indiees from the
variablesv,,, andw,,.
Introducing the quantities

1 Zw ; —Kk +in/w
k=—vw?—1, =->—, A= 15
Ae v 7 kAc A+1In (15)

the radial hydrogenicontinuum wave functions belonging to electron enerfy= m.c2 - w has the following

form:
g | _ (—1)° | k- /w:l:le%nn|1“(k+in)| (2kr)*
f(r) TEVw+1 F(Z)\-Fl) r

Re ., .
x e M A +in) - aF1(A + 1+ in, 20 + 1; 2ikr) ). (16)
Im

Methods to construct analytical expression for the bound- and free-state solutions of the Dirac-equation in central
field have been described in detail by Greiner [4] and Rose [5]. For numerical calculation of the radial continuum
Dirac—Coulomb functions we use a program developed by Salvat et al. [2].

The bound-state wave functions are normalized to unity. The normalization of the free states is such that the
upper component oscillates with unit amplitude in the asymptotic region apart from the energy normalization
factor (k/(m E))Y/2. It is a natural expectation that in the non-relativistic limit the upper component reduces to
the non-relativistic Coulomb function, and the lower component vanishes. For calculation of the bound-state wave
functions we adopted the normalization condition determined by Salvat et al. [2] which gives correct sign for this
limit. This is ensured by the factqr-1)€ in Egs. (14) and (16% equals 0 whemr < 0O, or equals 1 wher > 0
(for an attractive potential, i.e. far> 0).

4. Codedescription

Since MTRDCOUL is the relativistic extension of MTRXCOUL [1], here we discuss only the differences
between the two programs.

The matrix elemenvVy; for the eigenstates of the total angular momentuis determined by the function VJ
according to Eq. (7). The value of VJ is obtained with the help of the function VK that calculates the Coulomb
matrix element for eigenstates of the Dirac angular momemntu(2;j + 1)(I — j) (the term with the sum over
L andM in Eqg. (7)). This function was named by VL in MTRXCOUL. Taking into account that the Dirac radial
wave functions depend on thiequantum number, the parameter list of VK includes alsojthend j; quantum
numbers in the relativistic version.

Before using the function VJ or VK, one has to call the subroutine PREPARE. This program unit calculates the
values ofGLl. (R) and stores them in the array GMTRX. PREPARE also includegtlggiantum number in its
parameter ﬁst. In the relativistic case the radial wave function has two components, accordingly the two integrands
in expression (8) of thé}iji(R) function consists of two terms. Therefore, we modified the integration subroutine
QGAUS, too.
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The final orbital angular momentuimvaries in the range from O tb max defined by the user. The quantum
numberd andx are related by

K, if « >0
l_{—K—l, if « <O. (17)
So, the first index of array GMTRX now corresponds to the valuesofvhich is changing between! f max — 1,
—Ifmax ..., —1, 1, ..., rmax— 1,1 r max according to Eq. (17). For more details of the program description, see
Sarkadi [1].

The components of the bound and continuum radial wave functions (see Egs. (13) and (16)) are generated by
the RINIT and RFINAL subroutines. For the K, L and M shells the bound wave funcgi@m f can be written
in the following simple forms:

gi(p) ao+ai1p +a2p2

= (=D)N; (L4 w)Y2pri—lgrir

: (18)
fi(p) co+c1p + c2p?

wherep = Zr and u; = v;/Z. For the K shell and the L subshells the coefficiemtsand ¢, were taken from
Rose [5], while for the M subshells they were derived in the present work.
For the free states the radial wave functions are as follows:

k

8Ec; (p) _g( k >1/2 F(n,%2)
- l k

fee,(p) | P\TE F)(n.%)

The regular Dirac—Coulomb functioﬂ?{“’l)(n,x) are provided by the code DCOUL [2] fdt # 0. DCOUL is
called as

19)

CALL DCOUL(-Z,E,K,R,FU, FL,GU, GL, ERR.

Here Z is the atomic number, E is the kinetic energy:K, R is the radial distance. FU, FL and GU, GL are the
upper- and lower-components of the regular and irregular Dirac—Coulomb functions, ERR is the accuracy of the
computed functions.

At limit of zero kinetic energy the relativistic continuum wave functions in the Coulomb field have the following
form [6]:

¢ |22 etk
gE=0,c; () = (=D, | 7[J2xf1(\/§) - i/zf J2i., (\/%)] (20)
1/2

Fo=ou; (0) = (=1 ——¢ Jos, (v8p). (21)

whereJ, (x) is the fractional order Bessel function. For calculatio/gfc) we use the relationship

2
J:(x) =/ = Fz-1/2(0, x). (22)
X

Here F, (n, x) is the regular Schrédinger—Coulomb function which is calculated by the subroutine FCOUL [2] with
the following parameters:

CALL FCOUL(ETA,RLAMB, X, F, FP, G, GP, ERR)

ETA=7=0, RLAMB =z — 1/2, X = (80)¥2, F and G are the regular and irregular Schrédinger—Coulomb
functions, FP and GP are their derivatives, ERR is the relative numerical uncertainty.
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5. Check of the program

For bound-free transitions, in the special caseFgf= 0, the limits GLI.(R = 0) and GJL%. (R — o0) can
be expressed analytically, therefore the numerically computed values can be checked faF theszions.
In this section we present some examples for the calculation ofGtheatrix. First we consider the 3/,
initial state and theEy = 0O final state withky = 1. In this case the parameters in Eq. (18) are as follows:
N = Z32/[2r (20 + D1Y?, wi = 2 /2, ni =1/2, a0 = co =1, a1 = a» = ¢1 = ¢ = 0. Using expressions (20)
and (21) for the initial and final states, as well as applying the integral formula of Ref. [7], the integration (8) of
the G the function can be performed analytically for large valueg @f the quadrupole order:

o0
2 _
G i(R_)OO)_W’ (23)
where
O — o2 jHhi+3 FGi+2rr+3 Ai 12
[2I (20 + 1)]Y/? 2
Fihi + A +3,20¢; —4
X{F(Zkf)l 1L + A+ =4
+ (3= v s ! Fiv+Ar 43,205 +1; —4) (24)
21xn) TN T T@ e Wt TS AL

As a second example, let us consider ¢héunctions values aRr = 0 for different final states (witlE ; = 0) and
multipole orders. As initial state, thepg,» orbital was chosen again. The analytical term of ¢h&nction at the
origin is:
L 0 L
GH(R—0)=CZ- R, (25)
where

4 _ 12
CO — _Sgr(Kf)ZZ)‘f‘H‘i*L F()w +)\f L) ( )\z>

[2r @y +D1¥2\" " 2
1
— — Fi(\i+As—L,2xs; —4
X{F(Zkf)l 1A +Ar 2 gy —4)
(2 e s ! Fi(vi+Ar—L, 20 +1; —4) (26)
27%) M TN T e T RS R

The results of these calculations are shown in the sample program. The convergence of the matrix elements for
E ¢ =0 to those for small and nonzera § # 0) energy has been checked.

As a further check of MTRDCOUL, we calculated K-, L- and M-shell ionization probabilities and cross sections
for proton on gold collisions within the framework of relativistic version (R) of the semiclassical approximation
(SCA) theory [8]. According to this RSCA model the ionization amplitadgis given by

+o00
afp=—i f dr Vi (1)e Er—EDL (27)
—00

where

Vii(t) = / dry/}(r)

P
mt//i (r). (28)
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HereZp is the charge of the projectilé,is the impact parameter. THg; matrix elements are obtained from our
program MTRDCOUL. For the description of the states of the inner-shell electrons, an effective Slater-screened
nuclear charg& of the target atom was used in conjuction with the experimental binding energy.

The transition amplitudes allow us to calculate the ionization probability as a function of the impact parameter

Pib) =Y lasil? (29)
f

where the sum is taken over all continuum states (including integrationfpeiT he total ionization cross section
is given by

0, =21 f db b P;(b). (30)
0

The calculated values of the K-shell ionization cross sections were compared with the results of the relativistic
plane-wave Born approximation (RPWBA) [9] in the energy range 1-5 MeV. For thedand L subshells the

check was made at 0.4 MeV. The obtained cross sections were compared again with the predictions of the RPWBA
model [10]. For the M, My, ..., Ms subshells we could not compare our results with other theories in lack of
relativistic M-shell ionization calculations in the literature (with use of hydrogenic Dirac wave functions). Since
the relativistic effects are small for the M shell, here we could make a comparison with the non-relativistic SCA
model. In the latter calculations the matrix elements were computed with MTRXCOUL [1]. The check for the M
shell was made at 0.5 MeV proton energy. For each shells (subshells) the present RSCA calculations were found
in satisfactory agreement with the other theoretical data. The above calculations were made assuming straight-line
for the projectile trajectory. As a further test, the K-shell ionization cross sections were also computed with a
more realistic version of the RSCA model, in which the projectile moves on a hyperbolic trajectory (H), and the
increase of the binding energy of the electron is taken into account in the united-atom approximation (UA). The
latter model, denoted by HRSCA-UA, resulted in cross section values in good agreement with the measured data
of Kamiya et al. [11].

6. Sample program

The MAIN program of MTRDCOUL includes sample calculations of the matrix elemgéptand the values of

the GJLCI.(R) function for several initial and final states. These are the following:

e Matrix elements between states of the total angular momentum. The quantum numbers of the initial and final
statesaren; =2,1; =0, =1/2,m;; =1/2, E; =0.1, jy =1/2,m;y = 1/2. The values of; are 0 and 1,
because of the relationshjig =y & 1/2. The polar coordinateRr, ¢ of the vectorR was chosen thak
varies between Q.10 in steps 1 and = 0.5 radian.

e Comparison of numerically compute{ﬂjéi (R — o0) values with the corresponding analytical ones for large
values ofR. Initial state:n; = 2, j; = 3/2,1; = 1. Final stateE; =0, jr = 3/2,1r = 1. Multipole order:

L = 2. The analytical resulc>/R®.

e The numerically computed?Li(R — 0) values are compared with the analytical results at the origin for
different multipole orders = 2,0, 1,0, 3) and final states. Initial state; = 2, j; = 3/2, [; = 1. Final
states:Ey =0, jr =1/2,1/2,1/2,3/2,3/2; 1y = 1,1,0,1,2. The analytical results: CCB"_,:O,KFP 0,

0
CE./:O)Kf:*Z' 0.

In the above sample calculatiois= 1 was taken for the nuclear charge of the atom. TheandC? constants
were evaluated using the MAPLE mathematical software system [12].
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TEST RUN OUTPUT

Matrix el ements between states of the total angular nmonentum
ni =1 1_i= 0 j_i= 12 nm_i = 12 j_f= 1/2 n_f = 1/2
E_f = 0.10000D+00 theta = 0.50000D+00
Z*R V(I _f=0) V(I _f=1)
0.00 0.510150603681870D+00 0. 643348846461918D- 16
1.00 0.251310302012083D+00 -0.104795445906079D+00
2.00 0. 623079628296980D- 01 - 0. 944000425736001D- 01
3.00 0.691992348636800D- 02 -0.584261981291566D- 01
4.00 - 0. 205056097180007D- 02 - 0. 331396045444634D- 01
5.00 - 0. 153499086559949D- 02 -0.196686893562784D- 01
6. 00 -0.534621795843407D- 03 -0.128820869819304D- 01
7.00 -0.110457479251192D- 03 -0.923660832344591D- 02
8.00 0. 868285167879229D- 07 -0.703804296715670D- 02
9.00 0.127773525167063D- 04 - 0. 556832819077795D- 02
10. 00 0. 757633525158059D- 05 -0.451822132300222D- 02
G function values for large R
n_i = 2 kappa_i = -2 kappa_f 1
E_f = 0.00000D+00
Z*R G L=2, nurerical) G L=2, analyt.)=const./(Z*R)**3
50. 00 - 0. 245005727643649D- 03 - 0. 245005823050562D- 03
70. 00 - 0. 892878363960091D- 04 - 0. 892878363886889D- 04
90. 00 -0.420106006602451D- 04 -0.420106006602473D- 04
110. 00 - 0. 230095626456201D- 04 - 0. 230095626456200D- 04
130. 00 - 0. 139397942108877D- 04 -0.139397942108877D- 04
150. 00 -0.907428974261342D- 05 -0.907428974261342D- 05

G function values at R=0

E_f = 0.00000D+00

L kappa_f n_i kappa_i G nuneri cal

2 1 2 -2 0.107676238637811D- 30
0 1 2 -2 0. 239267242032862D+00
1 -1 2 -2 0. 299102568323444D- 16
0 -2 2 -2 0. 239276898638137D+00
3 2 2 -2 0. 119638449319068D- 15

G anal yti cal

0. 000000000000000D+00
0.239267242032860D+00
0. 000000000000000D+00
0.239276898638135D+00
0. 000000000000000D+00



