

Multisine design with minimum Crest Factor and its application for IHF measurement

Customer: NMP Project: New York Product: D-Cover Test system: FT and AOI

www.elcoteq.com

Multisine input signals

A multisine input is a deterministic, periodic signal composed of a harmonically related sum of sinusoid:

A_k: magnitudes of sinewave components of multisine Φ_k : phase shifts for harmonic *k* N_k: integer multiples of frequency spacing $\Delta f=f_c / M$: sampling frequency / sequence length

www.elcoteq.com

ELCOTEQ

ELCOTEQ

Definition of the Crest Factor

The Crest Factor (CF) of signal x(t) is the ratio of the \pounds_{∞} (or Chebyshev) norm and the \pounds_2 norm:

$$CF[x(t)] = \sqrt{\text{PAPR}} := \frac{\|x(t)\|_{\infty}}{\|x(t)\|_{2}} = \frac{\max_{t \in [0,T]} |x(t)|}{\sqrt{\frac{1}{T} \int_{0}^{T} |x(t)|^{2} dt}}$$

Crest Factor Minimization

For a given multisine the reduced Crest Factor value can be obtained from the solution of a minimization problem on the function of the phase offset.

$$\min_{\{\phi_0,\phi_1,...,\phi_{N-1}\}} CF\left\{x(t, [\phi_0,\phi_1,...,\phi_{N-1}])\right\}$$

www.elcoteq.com

Problems with Minimax Solution

- Nonlonear optimization problem
- The solution call for relatively large scale numerical mathematics tools
- The computational time is rapidly increasing with increasing of the number of the multisine components

This problem requries the use of state-of-art optimization techniques

Software Developing Goal

The aim is to construct a program

i) which gives accurate results,

i)) that is amenable to real-time computation,

i))) and is thus consistent with the needs of the practising engineer.

www.elcoteq.com

Brief outline of the calculation method

- In our solution approach the method of *Guillaume et al.* is applied that is based on the Pólya's algorithm
- The problem is formulated in the MATLAB (MATrix LABoratory) program system which provides high accuracy built-in numerical functions

The iterative phase update equation can be expressed as

$$\begin{split} \mathbf{p}^{(i)} &= \mathbf{p}^{(i-1)} - [\mathbf{J}^{(i-1)T} \\ \mathbf{J}^{(i-1)} + \boldsymbol{\Lambda}^{(i-1)}]^{-1} \mathbf{J}^{(i-1)T} e^{(i-1)} \ , \end{split}$$

where the real-valued phase vector is

$$\mathbf{p} = \left[\phi_0 \ \phi_1 \ \dots \ \phi_{N-1} \right]^{\mathrm{T}} \ .$$

An FFT-based procedure is used to compute the Jacobian matrix **J**.

www.elcoteq.com

ELCOTEQ

ELCOTEQ Example for the application: IHF speaker Impedance test

Crf: 1.7576, clip at: 0.972*max, iter: 5000, opt. cyc: 4982

Frequencies

257.81250

281.25000

304.68750

316.40625

328.12500

339.84375

351.56250

	Amplitude	Harmonic numbers
	2	22
	2	24
╪╪┼┽╪┊╪ ╪╪┼┽╪╪╪ ╪╪┼╪╪╪	2	26
	2	27
╪╪ <u>╪</u> ╪┊┊┊┊┊┊┊	2	28
	2	29
0.04 0.05 0.06 0.07 0.06 alue: 13.15; N=3000, oversampl=50.00	2	30

www.elcoteq.com

1.5

0.5

-0.5

-1.5

0

0.02

Eff. value: 7.483, peak v

0.01

0.03

Normalized x(t)

Phase offset

-0.0043

-1.3636

-2.5971

1.6821

-1.9018

-0.4176

User interface of the program

					🛃 Input for multisine	
	🖉 CF Calc				Magnitudes of sinewave components of	i multisine
	File Tools Help					
	Amplitudes	Harmonic Numbers	Phases			
	0	0	0			
	Empty	Empty 💌	Empty	<u> </u>		
	Graph					
	Contraction of the second	Carrier Frequency	Segment I	ength	Integer multiples of frequency spacing	
		0	0			
Ι	Crest Factor Iterations		Gridpoints			
	0	0]0			
9	Peak Value	df=0 Hz	f [Hz]	Set		
			Empty 💌	Denet	l Phase offset	
	RMS Value	Ip=[Usec		Reset		
	F	qs=0		Calc		
	Opto	cyc=0		Quit		
		at a state of the second s				
					Cancel	ок (

www.elcoteq.com

ELCOTEQ